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Abstract

Women and girls reported as “haemophilic females” may have complex genetic causes for their
haemophilia phenotype. In addition, women and girls may have excessive bleeding requiring
treatment simply because they are heterozygous for haemophilia alleles. While severe and
moderate haemophilia are rare in females, 16% of patients with mild haemophilia A and almost
one-quarter of those with mild haemophilia B seen in U.S. haemophilia treatment centres are
women and girls. A phenotypic female with a low level of factor V111 or factor 1X may be
classified into one of the following categories of causality: homozygosity (two identical
haemophilia alleles), compound heterozygosity (two different haemophilia alleles), hemizygosity
(one haemophilia allele and no normal allele), heterozygosity (one haemophilia allele and one
normal allele), genetic causes other than haemophilia and non-genetic causes. Studies required for
classification may include coagulation parameters, F8or F£9sequencing, F8inversion testing,
multiplex ligation-dependent probe amplification, karyotyping and X chromosome inactivation
studies performed on the patient and parents. Women and girls who are homozygous, compound
heterozygous or hemizygous clearly have haemophilia, as they do not have a normal allele.
Heterozygous women and girls with factor levels below the haemostatic range also meet the
definitions used for haemophilia treatment.
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INTRODUCTION

The dogma that haemophilia affects males and is transmitted through unaffected females has
over centuries hampered the recognition that women and girls with haemophilia may bleed
as significantly as affected males. The group of women who have been reported as
“haemophilic females” may have complex genetic causes for their haemophilia phenotype.
In addition, women and girls may have excessive bleeding requiring treatment simply
because they are heterozygous for haemophilia alleles, either haemophilia A (HA), a defect
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or deficiency of factor VIII (FVIII), or haemophilia B (HB), a defect or deficiency of factor
IX (FIX). The gene for FVIII, F8 and the gene for FIX, F9, are both located on the tip of the
long arm of the X chromosome. The role of the X chromosome in sex determination leads to
the pattern of X-linked inheritance, which has been recognized for the haemophilias since
ancient times.!

Literature in the 1800s questioned whether haemophilia could occur in women:?2 in the 1900
s, a lively discussion of the possibility ensued until the publication of cases in the 1950 s
describing women with homozygous? and heterozygous* haemophilia with bleeding
symptoms similar to those seen in their affected male relatives. Study of the genetic causes
for haemophilia in females has kept pace with, and often informed, understanding of genetic
principles, particularly those surrounding the function of the X chromosome.5~7 Today,
clarification of the molecular basis for HA and HB has provided new tools with which to
address the topic. With more than 3000 unique mutations in ~&® and more than 2000 in F&
reported since 1983, inheritance and new mutation can be precisely distinguished. In
addition, techniques now exist for assessing the expression of X chromosome genes. The
application of these tools in understanding the genetic causes of haemophilia in women and
girls is the topic of this review.

2| X CHROMOSOME GENETICS

The F8and F9genes are located on the long arm of the X chromosome at Xg28 and Xq27.1,
respectively, making them subject to the unique inheritance pattern of X-linked genes. Males
who have a deleterious allele on their single X chromosome exhibit its full effects and are
called hemizygous. Severity of symptoms is based on the specific deleterious allele present
and is classified as severe if FVIII or FIX is <1 unit/decilitre (u/dL), moderate if 1-5 u/dL
and mild if >5 and less than 40 u/dL.1% Homozygous females with two abnormal alleles will
have the same phenotype as hemizygous males, while heterozygous females are usually
protected by the presence of a normal allele on their second X chromosome. Phenotypic
variability among heterozygotes, however, was reported as soon as factor assays became
available in the 1950 s.11:12 The distribution of factor levels in heterozygous women
compared to control women is shown in Figure 1, which illustrates the wide ranges seen in
both groups, with heterozygotes having a mean level near 50 u/dL and controls with a mean
near 100 u/dL. The variability seen is due to the fact that X chromosome genes are subject to
X chromosome inactivation (XCI).13

XCl is a normal process by which each cell of a female contains only a single functioning X
to equalize the “dose” of X chromosome genes between males and females. XCI was first
described by Mary Lyon in 196114 using coat colour genes in the mouse and has been called
“Lyonization.” In 1962, Lyon ascribed the variable expression of both HA and HB in
heterozygous women to cellular mosaicism produced by this process.®

XCI involves three now well studied phases: initiation, spreading and maintenance.1>
Initiation occurs in early embryogenesis and is genetically controlled at a master regulatory
locus, the X inactivation centre.16:17 A critical element located in this region is the X/ST
gene which encodes the X inactive-specific transcript long noncoding (X7S7) RNA which is
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expressed exclusively from the silenced X chromosome.18:12 Spreading occurs when the
XISTRNA upregulated from a single X chromosome accumulates /7 ¢/s, coating that
chromosome and acting as a scaffold to help recruit factors required for stable chromosome-
wide chromatin remodelling and gene silencing.29 Once established, maintenance of the
silenced state, including X/S7 RNA expression, DNA methylation and repressive histone
modifications, is stable and is clonally inherited through somatic cell divisions. A detailed
discussion of XCl is provided in a recent review.2°

Because XCI occurs early in development and normally randomly silences either the
maternally or paternally derived X chromosome at initiation, typical XX females are mosaic
with two populations of cells, each expressing alleles from one chromosome or the other.
The X inactivation ratios, or proportions of cells expressing alleles from one X chromosome
compared to the other, can vary from an even 50:50 expression to 100:0 expression from a
single chromosome. In fact, in what remains the largest study of its kind, Amos-Landgraf et
al?1 used the human androgen receptor locus methylation assay to determine the X
inactivation ratio in over one thousand phenotypically unaffected females and found that the
ratio was normally distributed with 8% of the individuals with a greater than 80:20 ratio.
Although highly skewed XCI greater than 95:5 can occur by chance, it is uncommon and
may be a marker for a deleterious X-linked defect particularly when found segregating in a
family. It is important to note that while XCI status is stably maintained during somatic cell
division, the silenced X is reactivated in female precursor germ cells so that each haploid
germ cell will contain an active X chromosome.22:23 The process then repeats itself in each
new female embryo.

3| EPIDEMIOLOGY OF WOMEN AND GIRLS WITH HAEMOPHILIA

Approximately 250 women and girls said to have haemophilia have been reported in the
literature worldwide, most with severe or moderate disease; for many of them, there is
insufficient information available to fully elucidate the underlying cause for their phenotype.
Early reports were limited by the inability to accurately measure factor levels, diagnose
other disorders and analyse chromosome and DNA structure. Some early cases have been re-
studied with newer methods. More recently, cases have been reported only if they
demonstrate a new mechanism or presentation; therefore, case reports do not accurately
reflect the number of affected women and girls. More useful data have come from bleeding
disorder surveillance. The Community Counts programme, initiated in 2011,24 has collected
de-identified data on all patients attending 135 federally funded U.S. haemophilia treatment
centres (HTCs). Table 1 shows the proportion of females among the unique HA and HB
patients attending these HTCs from January 2012 through September 2020.25 Those with
known severity may be assumed to have a diagnosis of HA or HB, while those with normal
levels or unknown severity may have attended the HTC for diagnosis or genetic testing.
Among those with a diagnosis, 6.1% of HA patients and 8.5% of HB patients were female,
for a total of 1672 females among 25,043 patients (6.7%). Severely affected and moderately
affected females were rare, 51 (0.48%) and 80 (1.4%) cases in those categories, respectively;
however, females made up 16.0% of mild HA patients and 23.7% of mild HB patients.
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4| CLASSIFICATION OF WOMEN AND GIRLS WITH HAEMOPHILIA

Females with a low level of FVIII or FIX may be classified into one of the following
categories of causality (Table 2): homozygosity (two identical haemophilia alleles),
compound heterozygosity (two different haemopbhilia alleles), hemizygosity (one
haemophilia allele and no normal allele), heterozygosity (one haemophilia allele and one
normal allele), genetic causes other than haemophilia and non-genetic causes.13 Tables 3 and
4 list cases identified by systematic review by searching electronic databases and
bibliographies of retrieved reports. Cases were included in which a specific deleterious
variant has been identified in F8or F9and for which published information was sufficient
for classification of the genetic explanation.

41| Homozygosity

Homozygosity in a female (Table 3A, 4A) most often occurs because of a cousin marriage
within a haemophilia family, with the father having haemophilia and the mother a
heterozygote by inheritance. This was first reported in the large family described by Treves
in 18862 and was confirmed with DNA analysis for £8in 2009.27 Three additional cases
with HA who were homozygous by inheritance have been reported.26:28.29 |n addition, one
girl with severe HA was described whose mother was heterozygous for an inversion of
intron 22 (inv22), the most common deleterious variant in £8 and whose father was
unaffected with paternity confirmed; a new instance of inv22 occurred de novo on the
paternally derived X chromosome. The paternally derived £8 gene was not missing, since a
paternally derived non-deleterious variant in F8was detected.30 This is quite rare, since the
inv22 variant more often originates in the gametes of the maternal grandfather.89 A single
homozygous case has been reported for FIX.58

4.2 Compound heterozygosity

Compound heterozygosity (Table 3B, 4B) has been observed due to inheritance of a
different haemophilia allele from each parent in the same gene.3! More often, compound
heterozygosity has resulted from the inheritance of one haemophilia allele and a de novo
mutation on the X chromosome received from the other parent.27:32:34.35.40 | two instances,
the de novo variant was a deletion of all or part of the F8 gene; this could be distinguished
from homozygosity only by assessment of gene dose by techniques such as Multiplex
Ligation-Dependent Probe Amplification (MLPA®).27:31 One case was reported in which a
prenatal diagnosis was performed in a woman heterozygous for a familial deletion causing
severe HA, which was absent in the foetus; the newborn male, however, was found to have
mild HA due to a second mutation which had occurred de novo in the mother, who had 7
u/dL FVI11.39 In another case,3¢ both parents were unaffected, requiring 2 new mutation
events, producing either homozygosity for inv22 or inv22 in combination with a deletion.
The latter seemed more likely due to lack of heterozygosity for any ~8polymorphism, but
MLPA® was not performed. Occasionally, heterozygotes are seen with an X chromosome
abnormality resulting in deletion of the region containing the F&or F9gene, but these are
more properly called hemizygotes.
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4.3 | Hemizygosity
Hemizygosity (Table 3C, 4C) is the state of having only one allele at an X chromosome
locus, the usual case in an affected male. This has occurred in phenotypic females who have
Turner syndrome (45,X)4°:62 or mosaic Turner syndrome.33 Haemophilia has also appeared
in 46,XY individuals who have a female phenotype because they have complete gonadal
dysgenesis*® or androgen insensitivity syndrome.28 Their chromosomal status has often
been detected due to a work-up triggered by their haemophilia. A haemophilia allele may
also be deleted as part of a larger X chromosome deletion or rearrangement, leaving a single
haemophilia allele.3341-44.61 Clinjcal features other than haemophilia may be apparent,
depending on the other genes involved.

4.4 | Heterozygosity with preferential X chromosome inactivation

Women and girls who are heterozygous may be functionally hemizygous because one of
their two X chromosomes is preferentially inactivated in every cell (Table 3D, 4D). Total
inactivation may occur if (a) one X chromosome is structurally abnormal, (b) another X
chromosome gene is deleterious to cell function, or (c) an X/ST allele is present that
preferentially influences XCI. X-autosome translocations have been observed that have the
normal X inactivated.33:47:63.65 |n other cases, an abnormal X chromosome with an
interstitial deletion*® and one with uniparental disomy (UPD) not including the haemophilia
locus8 were inactivated. In such cases, the presence of haemophilia is determined by
whether the active or inactive X bears the haemophilia allele. In a HB female with FIX <1
u/dL and an X-autosome translocation involving preferential inactivation of the normal X,
no defect in F9was found, and it was suggested that movement of the £9gene to
chromosome 14 influenced its regulation.8 In one family, a microdeletion not visible on
karyotyping was proposed to be the cause of severe HA in a girl.%> The authors suggested
that such subclinical defects may be an often overlooked mechanism in affected women.

XClI can also be influenced by other genes, either those lethal at the cellular level or those
controlling XCI. Women heterozygous for both HA and incontinentia pigmenti36:82 or
Coffin-Lowry syndrome2” had X chromosomes with those disease alleles preferentially
inactivated leaving the X with the HA allele active because of the deleterious effects of the
other disease alleles. One family has been described with three generations of skewed XCI
and a common allele at the X/ST locus.>°

45| Heterozygosity with skewed X chromosome Inactivation

Women and girls who are heterozygous for variants that cause HA or HB have levels of
FVIII or FIX determined by where they fall on the spectrum produced by XCI (Figure 1).
Those with low levels are often referred to as having skewed XCI (Table 3E, 4E); however,
this is not an abnormality but the result of the normal process of XCI. In some
heterozygotes, just by chance, all of the normal alleles are inactivated causing the woman to
have no more FVIII or FIX than her affected male relatives. In other heterozygous women,
all of the haemophilia alleles may be inactivated causing totally normal factor levels. These
extremes are relatively rare, and any factor level between totally normal and totally
abnormal may be produced. The phenotypic range of heterozygotes is demonstrated by a
family with HA (Figure 2),83 in which three daughters of a man with 6 u/dL FVIII had 9
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u/dL, 40 u/dL and 112 u/dL FVIII; the sister with the highest level had an affected son.
Monozygotic twins with widely discrepant levels also demonstrate this random effect for
HA5257 and HB.84

A number of women and girls with haemophilia have been reported with no explanation for
their phenotype other than XCI. When no other cause can be identified, the chance
occurrence of skewed XCI is presumed and can often be demonstrated, as discussed above.
In cases where multiple women in a family have the same phenotype, however, the
likelihood of multiple rare XCI events occurring by chance in the same family is small, and
a genetic cause can be postulated, such as alleles at X/S7°0 or a very small structural
change.® This may explain some isolated cases as well, when complete skewing occurs,
demonstrated by a female having the same level as affected males in the family.85

Since levels of FVIII or FIX in heterozygotes produce a normal distribution with a mean of
about 50 u/dL (Figure 1),12:86 one-half of heterozygotes would be expected to have levels
below 50 u/dL. From distributions of heterozygote data, it has been estimated that 28% of
heterozygous women will have levels outside the haemostatic range, that is below 40 u/dL.87
Bleeding symptoms in heterozygotes have been recognized since the 1951 report of Merskey
et al;88 comparing 19 proven heterozygotes from haemophilia families with 100 control
women, they found 47%, 16% and 11% of heterozygous women had bleeding following
tooth extraction, cuts and surgery, respectively, compared to 5%, 7%, and 2% of control
women. These findings were confirmed in a larger study in 1988.8% That study and two more
recent ones®%91 provided data on bleeding symptoms of heterozygotes and unrelated or
genetically proven control groups from which odds ratios could be calculated (Figure 3).
Odds ratios were significantly higher for heterozygotes compared to controls for excessive
bleeding from tooth extraction, surgery and delivery. Hemarthrosis occurred rarely in the
groups studied and was increased, although not significantly. The findings for heavy
menstrual bleeding and epistaxis were more variable, with one study®° showing significantly
increased odds ratios for both and the other two having odds ratios that were not significant.
89.91 The latter two symptoms are seen more often in disorders of primary haemostasis.
Menorrhagia is not invariable even in severely or moderately affected women with
haemophilia.33 An international study92 of the International Society on Thrombosis and
Haemostasis Bleeding Assessment Tool (ISTH-BAT) in 168 women heterozygous for HA or
HB found them to have a higher bleeding score than 46 age-matched control women (5.7 vs.
1.43, p<.0001). Heterozygotes scored higher in the categories of cutaneous, minor wound,
oral cavity, menorrhagia, hemarthrosis, postdental, postsurgical and postpartum bleeding.
There was a significant inverse correlation between factor level and bleeding score. Raso et
al.93 compared 44 heterozygous women with factor levels of 6-49 u/dL to 77 males with
mild haemophilia with factor levels of 5-40 u/dL. The males had somewhat higher rates of
bleeding than the females in most categories, the most striking difference being hemarthrosis
(36% vs. 4%); however, the comparison was hampered by the significantly lower mean
factor level in males (19 vs. 29 u/dL, p < .0001). Women and girls with <40 u/dL FVIII or
FIX have been shown to have reduced joint range of motion compared to healthy female
controls at all ages, suggesting that joint bleeding does occur in that group.94
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4.6 | Other genetic disorders

Women with decreased FVIII due to HA alleles may be misdiagnosed as having von
Willebrand disease (VWD), particularly type 2 variants in which von Willebrand factor
(VWF) antigen is present at normal levels, although dysfunctional.®> VWD type 2N, in
particular, has been said to “masquerade” as haemophilia; it is caused by production of
otherwise normal VWF with decreased ability to bind FVIII and is inherited as an autosomal
recessive disease.® In homozygous individuals, it results in FVI1II deficiency in the
moderate-to-mild range with normal VWEF antigen and activity. Type 2N alleles may also
occur in combination with those for other types of VWD, resulting in a more variable
picture, usually with reductions of VWF antigen and/or activity but much lower FVIII levels.
It can be detected by measuring the binding of FVI1I to VWF and identification of specific
mutations.% VWD 2N is frequent enough to have been reported within haemophilia
families.96:97 Other VWD types resulting in intermediate FVI11 levels are usually autosomal
dominant disorders and can be distinguished from HA by the panel of tests commonly used
to diagnose VWD. VWD type 3 is a severe disease that is usually observed in individuals
who are homozygous or compound heterozygous for VWD alleles. It results in FVIII levels
less than 10 u/dL but with undetectable levels of VWF antigen and activity, making it easy
to distinguish from HA.%5

Women with decreased FVIII levels also may have combined factor V (FV) and FVIII
deficiency, an autosomal recessive disorder characterized by mildly decreased levels of both
FVIII and FV, caused by mutations in the LMANZI and MCFDZ2 genes.®8 This is usually
detected by prolongation of both the prothrombin time and the partial thromboplastin time.
No vertical transmission of this rare trait should be seen in the family. Heterozygous parents
are unaffected.

FIX deficiency also occurs in combined vitamin K-dependent clotting factor deficiency, an

autosomal recessive disorder with decrease in factors 11, VI, IX and X due to defects in the
vitamin K pathway.% This is easily differentiated from HB by the decrease in other clotting
factors but must be distinguished from acquired deficiencies due to lack of vitamin K.

4.7 Non-genetic causes

Acquired HA, due to an autoantibody directed against FVIII in a person without a genetic
bleeding disorder, occurs most often in the elderly or postpartum.®? It can be distinguished
by the absence of a lifelong history of bleeding symptoms and with laboratory tests.
Acquired HB has been reported much more rarely.100.101

Vitamin K deficiency resulting in decreased FIX levels, as well as the other vitamin K-
dependent factors, is a source of bleeding most often seen in the neonate or later in infancy
but possible at any age.192 It will result in a prolonged prothrombin time due to decreased
factor VII levels, which is not a feature of HB.

5| DIFFERENTIAL DIAGNOSIS FOR HAEMOPHILIA IN A FEMALE

The differential diagnosis for a female with a low FV11I or FIX activity level and the tests to
be considered as part of the work-up (Table 5) are guided by the presence or absence of
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haemophilia in the family and the age, clinical status and history of the patient. If
haemophilia is present in the family, it is likely that the patient has inherited at least one
haemophilia allele, and the reason for her haemophilia phenotype can usually be elucidated
by further testing. Most genetic explanations apply similarly to HA and HB. A complete
genetic work-up including karyotyping is important for clinical management in severe and
moderate cases. Mild cases are less likely to have a complex genetic cause. A FVIII or FIX
level higher than that of affected male relatives usually means that at least one normal allele
is present. Gene studies are required in all cases to determine definitively how many disease-
causing alleles are present, both for clinical purposes and to predict reproductive outcomes.
Tests required to establish genotype may include sequencing of the affected gene and testing
for the common intron 22 inversion in £8, as conducted in affected males, as well as MLPA
for copy number to detect gene deletions in the heterozygous state. Non-paternity is more
common than new mutation, and paternal mosaicism has also been observed.”® For women
and girls with severe or moderate disease, genotyping of both parents, along with
measurement of their factor levels, is warranted, even in the absence of a paternal history of
bleeding, to establish paternity and mutation source, since inheritance from both parents has
been reported. Parental testing may be necessary in mild cases if inheritance is unclear, to
inform other family members. XCI studies are less commonly performed but can provide
important genetic information in some cases. It should be noted that other disorders, such as
VWD, may also occur in families transmitting haemophilia and their correct diagnosis is
necessary for appropriate treatment. When there is no family history of haemophilia, both
haemophilia and other disorders must be considered. Disorders also exhibiting FVIII
deficiency include von Willebrand disease, combined FV and FVIII deficiency, and acquired
haemophilia. FIX deficiency can occur in genetic deficiencies of multiple factors, acquired
haemophilia and vitamin K deficiency. Acquired haemophilia is usually ruled out by the
presence of a lifelong history of bleeding. Other disorders can be ruled out by appropriate
laboratory tests, as discussed above.

6| SYMPTOMS OF HAEMOPHILIA IN WOMEN AND GIRLS

Women with low FVIII or FIX levels may be classified using the same categories of severity
as for affected males based on factor level.10 Women with levels in the severe and moderate
range have had significant joint disease.2’33 Those in the mild range have experienced
traumatic hemarthrosis.28:74.78.103 |n heterozygotes, factor levels rise with age.104 Joint
impairment observed in heterozygotes with currently normal levels® may have occurred
when they were younger and had lower factor levels. Women with no normal allele
(homozygous, compound heterozygous and hemizygous women) are equivalent to affected
males and would not be expected to show this change. In addition to the symptoms seen in
affected males, women with haemophilia have the additional risks of excessive bleeding
with menstruation, childbirth, and spontaneous or induced abortion.19% In HA heterozygotes,
FVIII levels usually rise gradually during pregnancy and may reach normal levels at term.
106,107 4B heterozygotes usually show no change.1%7 In both, prenatal diagnostic procedures
may result in bleeding and potential pregnancy loss if performed without treatment.105 Odds
ratios for symptoms commonly seen in heterozygotes are shown in Figure 3 and discussed
above. Women and girls with haemophilia should receive treatment based on their factor
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levels and clinical history at specialized haemophilia treatment centres. In addition, each
affected woman warrants genetic counselling in order to understand her disorder and her
potential reproductive outcomes, which may differ from those of other family members
depending on the cause of her haemophilia.

Inhibitors to FVIII have been reported in three women with haemophilia who had been
previously documented to have low FVIII levels. A girl diagnosed at age 10 months with
severe HA (FVI1II <1 u/dL) had a de novoinv 22 and also a large X chromosome deletion
starting at Xq22 and including £8 making her hemizygous. She was placed on prophylaxis
with plasma-derived FVIII concentrate and after 25 exposure days developed a high-titre
inhibitor.4° The other two cases had family history of HA. A 31-year-old heterozygous for
an inv22 with FVIII level of 20 u/dL developed a low-titre inhibitor after two surgeries with
B-domain-deleted FV111 replacement.108 A 42- year- old with 30 u/dL FVIII developed a
high-titre inhibitor after total hip arthroplasty treated with B-domain-deleted FV111.199 She
was heterozygous for an exon 3 missense variant, p.Pro114His, which has been reported to
cause mild disease and is not known to predispose to inhibitors.® All three women
successfully underwent immune tolerance induction therapy. Two additional women
heterozygous for F8variants developed FVIII inhibitors later in life, but neither had a
history of excessive bleeding, low FVIII or treatment prior to inhibitor development; they
may represent acquired haemophilia.4%110 Development of an inhibitor in a woman with one
normal allele is unexpected and may relate to the type of product used.

7| CONCLUSIONS

Women with FVIII or FIX levels below the haemostatic range can be expected to have the
same degree of bleeding symptoms as males with haemophilia having similar factor levels,
as well as gynaecologic and obstetrical bleeding. Identification of women who have levels
comparable to affected males is important to assure that they receive appropriate treatment
based on factor level and clinical history, particularly for surgery, dental procedures and
childbirth. It has been estimated that there are 5-6 potentially heterozygous women for every
affected male in the population.111 Testing of factor levels in women and girls from
haemophilia families and review of their history is important for their clinical care, even
when DNA analysis is used to assess their genetic status. The more severely affected women
will present with unexpected bleeding and require more extensive evaluation. Review of
reported cases shows that affected women occur both in families transmitting HA or HB and
through de novo mutation. Even if no family history of haemophilia is known, women with
low FVIII or FIX levels potentially ‘carry’ at least one haemophilia allele!12 and should be
investigated in order to provide appropriate treatment and genetic counselling.

Women heterozygous for haemophilia alleles have traditionally been called “carriers,” and
those with symptoms called ‘symptomatic carriers’. These terms do not reflect our current
knowledge of haemophilia and genetics. The rare women who are homozygous, compound
heterozygous or hemizygous clearly have haemophilia; they do not have a normal allele.
Women who have been shown to be heterozygous but have factor levels below the
haemostatic range also meet the definitions used for haemophilia treatment. One in six
patients with mild HA and almost one-quarter of those with mild HB seen in HTCs in the
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United States are women and girls (Table 1). For genetic purposes, it is appropriate to assign
zygosity and to use scientifically accurate terminology in addressing families. The presence
of bleeding symptoms in a proportion of heterozygous women and girls, and the rare
instances of more severely affected females, should be discussed in genetic counselling for
haemophilia. For treatment purposes, it is appropriate to apply a classification based on
factor level rather than genetic status. The term “carrier” should not be used, because it
lumps affected and unaffected women together and is viewed by some as pejorative or
dismissive;113 its use does not aid women in getting appropriate medical care and
reimbursement.
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FIGURE 1.
Theoretical distribution of factor VIII or X levels in women heterozygous for variants

causing haemophilia (heterozygotes) and for women not having variants causing
haemophilia (controls)
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FIGURE 2.
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Comparison of the phenotypes of three haemophilia heterozygotes in a family transmitting
haemophilia A,83 showing factor VIII coagulant activity (FVI11:C), von Willebrand factor
antigen (VWF:Ag) and von Willebrand factor activity as ristocetin cofactor (VWF:RC) in

units per decilitre
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FIGURE 3.
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(B) Surgery
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Odds ratios and 95% confidence intervals of bleeding symptoms in women heterozygous for
haemophilia A or B compared to women without haemophilia from three studies: A,89 B91
and C9

Haemophilia. Author manuscript; available in PMC 2021 May 19.



Page 19

Miller and Bean

“2.311199p Jad snun,

(8°21) T¥ST 8598 ('1) 08 9695 (87°0) 1§ 689'0T g pue v eljiydowseH
(L°€2) ¥8¥ [A0r4 (98°0) 02 GTEZ (zv0) L 1597 g eljiydowseH
(0'91) 50T 9799 (871)09 18€€ (67°0) v 8£06 Vv ®ljiydowseH

(%) usoewaq uswaned (9p) Ussewdd  usuaned (%) Ussjewsd U sjusned

(Ip/N 0v> 01 G<) PIIN (IP/N G-T) o¥EIBPON (g 1PN T>) 81385

oz WY 1030By-Z-3]qel/6-020Z/SHodaI-erep/slunodAjunwiody el jiydoway/pppaou/Aob - opo mmm
//:01y W) ‘umouy| S|aAs| 1019} UM 0Z0Z Jaquiardas ybnoayl ZToz Alenuer wol) $a1e1S paliun ayl ul Sajuad juawieas) eljiydowsey Buipuale sjusijed

T3149vL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Haemophilia. Author manuscript; available in PMC 2021 May 19.


https://www.cdc.gov/ncbddd/hemophilia/communitycounts/data-reports/2020-9/table-2-factor.html
https://www.cdc.gov/ncbddd/hemophilia/communitycounts/data-reports/2020-9/table-2-factor.html

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Miller and Bean

TABLE 2

Possible causes of factor VIII (FVIII) or factor IX (FIX) deficiency in women and girls.

1. Homozygosity (two identical haemophilia alleles)

Consanguinity in haemophilia family

Haemophilia in unrelated parental families

Second mutation occurring de novo in a woman heterozygous by inheritance
Two new mutations

11. Compound Heterozygosity (two different haemophilia alleles)
Haemophilia in unrelated parental families

Second mutation occurring de novo in a woman heterozygous by inheritance
Two new mutations

111. Hemizygosity (one haemophilia allele, no normal allele)

Single X chromosome: 45,X: Turner syndrome and mosaics

Male karyotype: 46,XY: Complete androgen insensitivity syndrome, complete gonadal dysgenesis
X chromosome deletion including ~8or F9gene

1V. Heterozygosity (one haemophilia allele, one normal allele)
Inheritance in haemophilia family
Inheritance from a haemophilia heterozygote with no or unrecognized family history
One new mutation
Followed by:
Skewed X inactivation
Unknown or random
Preferential X inactivation due to:
X chromosome abnormality
Cell viability disorder
Specific allele of the X inactive-specific transcript gene X/ST
Other inherited skewed X inactivation

V. Other genetic causes

von Willebrand disease, particularly Type 2N (autosomal dominant or recessive)

Factor V and V111 deficiency (autosomal recessive)

Combined vitamin K-dependent clotting factor (11, VII, IX and X) deficiency (autosomal recessive)

V1. Non-genetic causes
Acquired haemophilia due to inhibitor to FVIII or FIX
Vitamin K deficiency

Haemophilia. Author manuscript; available in PMC 2021 May 19.
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TABLE 5

Page 27

Diagnostic evaluation for a female with decreased factor VIII (FVI1II) or factor IX (FIX). See text for further
discussion of test choice.

To include

Purpose

1. History and
physical

Current clinical status
History of excessive bleeding
History of joint pain/swelling
History of chronic diseases

Reproductive history

Characterize bleeding phenotype
Determine if history is lifelong
Identify undiagnosed hemarthrosis
Identify non-genetic causes

Assess fertility

11. Family history and
pedigree

Family history from knowledgeable relatives

Laboratory results on affected relatives

Determine inheritance pattern

Determine severity in males

111. Laboratory studies

Factor VIII decreased

Factor IX decreased

von Willebrand disease profile

Factor V

Factor V111 binding to von Willebrand factor
Factor V111 inhibitor

Factors I1, VIl and X

Factor IX inhibitor

Rule out von Willebrand disease

Rule out factor V and V111 deficiency

Rule out von Willebrand disease Type 2N
Evaluate for possible acquired haemophilia

Rule out combined vitamin K-dependent clotting factor
deficiency, genetic or acquired

Evaluate for possible acquired haemophilia

V. Genetic studies

Paternity testing
Karyotype with high-resolution of X
Sequencing of F8or F9

Multiplex Ligation-Dependent Probe Amplification
(MLPA®)

X chromosome inactivation studies

Rule out non-paternity
Identify X chromosome abnormality
Identify point mutations

Identify gene deletions or duplications

Identify non-random inactivation
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